ホーム » sktime » sktime 0.7 : Welcome to sktime

sktime 0.7 : Welcome to sktime

sktime 0.7 : Welcome to sktime (翻訳/解説)
翻訳 : (株)クラスキャット セールスインフォメーション
作成日時 : 07/13/2021 (v0.7.0)

* 本ページは、sktime の以下のドキュメントを翻訳した上で適宜、補足説明したものです:

* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

 

クラスキャット 人工知能 研究開発支援サービス 無料 Web セミナー開催中 人工知能 & ビジネス Web セミナー

◆ クラスキャットは人工知能・テレワークに関する各種サービスを提供しております :

◆ 人工知能とビジネスをテーマに WEB セミナーを定期的に開催しています。スケジュール
  • お住まいの地域に関係なく Web ブラウザからご参加頂けます。事前登録 が必要ですのでご注意ください。
  • ウェビナー運用には弊社製品「ClassCat® Webinar」を利用しています。

お問合せ : 本件に関するお問い合わせ先は下記までお願いいたします。

株式会社クラスキャット セールス・マーケティング本部 セールス・インフォメーション
E-Mail:sales-info@classcat.com  ;  WebSite: https://www.classcat.com/  ;  Facebook

 

sktime 0.7 : Welcome to sktime

時系列による機械学習のための統合フレームワーク

以下を含む、複数の学習問題のための時系列モデルを構築、調整そして検証するための専門的な時系列アルゴリズムと scikit-learn 互換なツールを提供します :

  • 予測、
  • 時系列分類、
  • 時系列回帰

深層学習については、コンパニオン・パッケージ: sktime-dl を参照してください。

 

インストール

パッケージは次を使用して PyPI を通して利用可能です :

pip install sktime

代わりに、conda を通してそれをインストールできます :

conda install -c conda-forge sktime

パッケージは活発に開発されていて幾つかの機能はまだステーブルではないかもしれません。

 

開発バージョン

開発バージョンをインストールするには、advanced インストール手順 を見てください。

 

クイックスタート

予測

from sktime.datasets import load_airline
from sktime.forecasting.base import ForecastingHorizon
from sktime.forecasting.model_selection import temporal_train_test_split
from sktime.forecasting.theta import ThetaForecaster
from sktime.performance_metrics.forecasting import mean_absolute_percentage_error

y = load_airline()
y_train, y_test = temporal_train_test_split(y)
fh = ForecastingHorizon(y_test.index, is_relative=False)
forecaster = ThetaForecaster(sp=12)  # monthly seasonal periodicity
forecaster.fit(y_train)
y_pred = forecaster.predict(fh)
mean_absolute_percentage_error(y_test, y_pred)
>>> 0.08661467738190656

詳細については、予測チュートリアル を確認してください。

 

時系列分類

from sktime.classification.interval_based import TimeSeriesForestClassifier
from sktime.datasets import load_arrow_head
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

X, y = load_arrow_head(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y)
classifier = TimeSeriesForestClassifier()
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
accuracy_score(y_test, y_pred)
>>> 0.8679245283018868

詳細については、時系列分類チュートリアル を確認してください。

 

以上



ClassCat® Chatbot

人工知能開発支援
クラスキャットは 人工知能研究開発支援 サービスを提供しています :
  • テクニカルコンサルティングサービス
  • 実証実験 (プロトタイプ構築)
  • アプリケーションへの実装
  • 人工知能研修サービス
◆ お問合せ先 ◆
クラスキャット
セールス・インフォメーション
E-Mail:sales-info@classcat.com